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Abstract— Stress -strain curves were carried out in the temperature range from 493K to 553K for Al-1wt%Si alloy samples containing the 
α-solid solution phase and irradiated with γ -doses up to 1.75 MGy. The measured parameters: fracture strain rate εf , fracture stress σ f , 
yield stress σy , coefficient of work hardening, χ and the obtained TEM micrographs showed increasing hardness up to 523K after which 
softening took place. Irradiation was indicating a compensated effect at any testing temperature. To model the work hardening 
characteristics of Al-Si alloy, the artificial neural networks (ANNs) technique was used. The results of ANN demonstrate the feasibility of 
such technique in extracting the hardening parameters and prove its effectiveness. 

Index Terms— Stress-Strain, Gamma-rays, Irradiation, Dislocation, Work hardening, Softening, Artificial neural network..   

——————————      —————————— 

1 INTRODUCTION                                                                     
echanical properties of aluminum can be improved by 
alloyin g, strain hardening, thermal treatment or by 

combination of the three techniques[1-4]. 
The Al–Si alloys are widely used in the automotive and 

aerospace industries, where they have been steadily replacing 
many conventional ferrous alloys due to their excellent com-
bination of properties such as good fluidity, low coefficient of 
thermal expansion, high strength-to-weight ratio, good corro-
sion resistance and minimum energy requirement for recy-
cling.  

In a quenched Al–Si alloy, silicon precipitates nucleate 
on vacancy clusters and dislocation loops [5]. Si precipitates 
become visible after the disappearance of the formed disloca-
tion loops. The nucleation of Si precipitates was enhanced by 
pre-ageing quenched specimens near room temperature as a 
result of the existence of the dislocation loops formed by the 
condensation of the quenched alloy in vacancies [6]. Studies of 
structure and mechanical properties of low silicon–aluminium 
alloys were carried out [7, 8]. Both strength and ductility of the 
alloy were functions of the size and distribution of the Si parti-
cles in the aluminium matrix [9]. 

In the Al–Si alloys, the solubility of Si in aluminum is 
negligible below 523 K [10], therefore separate phase exists. 
Above 523 K, the process of Si precipitation cease and, conse-
quently, a reduction in the microhardness of these alloys is 
observed above 573 K [11].  

Ionizing radiation is known to be one of the major 
sources for altering the internal structure of crystalline metal-

lic materials and consequently their properties, that are largely 
governed by lattice defects [12]. Therefore, attention is focused 
on irradiation effects to search for new materials that can 
withstand radiation damage[12]. On the other hand, we try to 
use the artificial neural network (ANN) [13-17] technique to 
model the hardening characteristics of Al-Si alloy. The ANN 
model is chosen for his ability to perform complex functions in 
various fields of application including pattern recognition, 
modeling, identification, classification, speech, vision and con-
trol systems [18].  

It is well known [19-22], in fact, that multilayer neural 
network with sigmoidal activation neurons an n-input neu-
rons can approximate any nonlinear, n-dimensional function, 
with a precision that depends only on the number of hidden 
neurons. 

The aim of the present work is to investigate the effect of 
temperature and gamma-rays irradiation on the work harden-
ing characteristics of Al-1wt%Si alloy as in section 4.1. Section 
4.2, introduce the development in the artificial neural network 
(ANN) and describe the manner of modeling and simulation 
the parameters: fracture strain rate εf, fracture stress σf, yield 
stress σy, and coefficient of work hardening, χ. 

2 EXPERIMENTAL PROCEDURE:   
Al-1wt%Si alloy was prepared by melting 99.99% pure alumi-
num and 99.98% Si in a clean graphite crucible in a vacuum 
induction furnace. The cast ingot was homogenized under 
vacuum of 10-3 Torr, at 823 K for 48 h and then cold drawn to 
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wires of 2 mm diameter. The wires were given intermediate 
annealing treatment at 773 K for 6 h then cold drawn in dia-
mond dies down to wires of 0.4 mm in diameter and 5 cm 
length. All the specimens were  solution treated  for 2 h at 823 
K,  then  quenched into water kept at room temperature (RT~ 
300K) to get samples containing the α-solid solution phase. 
The samples were irradiated with different doses of gamma 
radiation up to 1.75 MGy. In the 60Co gamma rays cell used, 
the dose rate was 1.58 KGy/min.  
       Stress - strain tests were carried out with an average strain 
rate of 2×10-2 S-1 in the temperature range from  493 K to 553 K. 
The load  applied to the sample was gradually increased by 
adding 200 g, with 30 second between each two successive 
loadings and the elongation was immediately recorded before 
the next loading. The elongations were measured by a dial 
gauge to an accuracy of  ± 10-5 m. The yield stress, σy is con-
sidered to be the stress corresponding to the first significant 
deviation from linearity in the starting part of the stress - 
strain curve. The maximum stress applied to the sample be-
fore fracture was taken as the fracture stress σf [23]. The mi-
crostructure of the Al-1wt% Si alloy was investigated using a 
joel 100S electron microscope working  at 100 kV. 

 
3. Modeling The hardening characteristics of Al-Si alloy 
using ANN:  

The ANN technique is described in detail in [13-17, 18-20]. 
The main ideas are summarized here. 

 
3.1. Basic principle: 
   An artificial neural network (ANN) consists of a number of 
very simple and highly interconnected computational ele-
ments, also called neurons or nodes (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Fig. 1, Neuron structure 
 
These nodes are distributed on many different layers: (a) 

one input layer, (b) one or many hidden layers and (c) one 
output layer. 

     The processing element calculates the neuron transfer 
function (f) of the summation of weighted inputs. The neuron 
transfer function, f, is typically step or sigmoid function that 
produces a scalar output as in eq. (1): 

n = f (Ʃi  Wi Ii + b)                                                      (1) 

where Ii, Wi, b are the i th input, the i th weight and b the 
bias respectively. 

 A particular transfer function (f) is chosen to satisfy some 
specification of the problem that the neuron is attempting to 
solve. The most commonly used functions is the tansigmoid 
and logsigmoid transfer function. 

3.2. Training of the ANN Model: 
For training the neural network, a vector in the data matrix 

is a pattern. Each pattern is given to the network and the out-
put is compared with the response. The data set is randomly 
divided into training and test sets. The error function is calcu-
lated after all the patterns are presented. Hence, it is a super-
vised learning. The best architecture (Fig. 2) is chosen by 
changing the number of hidden layers, hidden neurons in 
each layer, transfer function and learning algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2- Multilayer perception neural network architecture 

 
The widely employed optimization procedure (learning algo-
rithm) in 1980, was back propagation (BP), which is a variation 
of steepest descent algorithm. Recently Marquardt, Conjugate 
Gradient, simulation annealing algorithm, Genetic algorithm, 
etc. have been in corporated in ANN software.  
 
4. RESULTS AND DISCUSSION: 
    
4.1. EXPERIMENTAL RESULTS:  
 
The stress-strain relations for Al-1wt%Si alloy samples irradi-
ated with different  γ-doses (0, 0.6, 1, 1.2 and 1.75 MGy) ob-
tained at different working temperatures. From the stress -
strain curves the following parameters were measured: frac-
ture strain rate εf, fracture stress σf, yield stress σy, and coeffi-
cient of work hardening, χ. The temperature dependence of 
these parameters for samples irradiated with different doses is 
given in Fig. 3, and electron micrographs showing Si precipi-
tates in Al-1wt%Si  alloy heated for 3 h at 423, 523 and 623 K 
are given in Fig. 4(a - c). It  is  clear from Fig. 3 that there exists 
a critical temperature (523 K) characterizing two opposite be-
haviours for the observed variations in the measured  parame-
ters. 
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The nucleation of precipitates in Al-Si alloys was enhanced by 
pre-aging quenched specimens near room temperature [24]. 
Such enhancement can be attributed to dislocation loops 
formed by condensation of quenched - in vacancies. Observa-
tions showed [9] that Si precipitates nucleated on vacancy 
clusters, but their formation and the subsequent nucleation 
took place within a few seconds after quenching. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3- The temperature dependence of :a) fracture strain rate, 
εf, b) fracture stress, σf c) yield stress, σy  and d) Hardening 
coefficient, χ, for irradiated samples with the indicated doses. 

At relatively lower temperatures, below 523 K, heterogeneous 
precipitation may take place by the motion of vacancy-Si atom 
pairs. The Si concentration might reach its equilibrium value 
due to the saturation of the heterogeneous nucleation sites. 
Although this process makes the matrix of the alloy poor in Si 
atoms, yet Si concentration remains still higher than the equi-
librium value. The remaining supersaturation of the matrix 
can thus be removed by homogeneous nucleation leading to 
zone formation responsible for the observed hardening for 
samples annealed at temperatures below 523 K. This harden-
ing shows itself in Fig.3 as an increase in all the hardening 
parameters such as:  σy, σ f and χ reaching maxima at 523 K 
and a decrease in εf to minima at 523 K. This is supported by 
the TEM micrographs of Fig. 4 (a, c) where the maximum 
hardness corresponds to the high precipitate density observed 
in Fig. 4b. 

 
Fig. 4 : Electron micrographs showing Si precipitates in Al -
1wt%Si alloy heated for 3 h at (a) 423 K (b) 523 K and (c) 623 K. 
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As the working temperature exceeds 523 K, the zones may be 
rather unstable and they can easily transform to nuclei of pre-
cipitates if the Si concentration of the matrix is not too low and 
the temperature is relatively high. The Si atoms in the zones 
can collapse to form precipitates, with sizes increasing with 
the working temperature (see Fig. 4c), leading therefore to a 
decrease in hardness. This decrease in hardness, or softening 
of the alloy, is reflected through the observed decrease in the 
hardening parameters  σf, σy  and χ  and an increase in εf  giv-
en in Fig. 3. The thermally induced internal structure of the 
alloy in the tested temperature range which leads to the ob-
served hardening behaviour up to 523 K after which a soften-
ing behaviour dominates, consists with previous studies [25].  
Irradiation damage caused by  γ -rays creates ionizing type 
defects of densities depending on the radiation dose. The ob-
served softening might be the result of the induced irradiation 
defects interaction with the existing quenching defects which 
leads to the annihilation of many defects at different sinks in 
the matrix. Also, the precipitating Si atoms on dislocations 
might be liberated and the pinned dislocations contribute to 
the density of mobile dislocations, which leads to the observed 
softening. 

 
4.2. SIMULATION RESULTS: 
  
The proposed ANN model of hardening characteristics of Al-
1wt%Si alloy, is simply shown as two-inputs one-output mod-
el, Fig.5. The inputs are: the different working temperatures 
(490 – 560 K) and the different  γ- doses (0, 0.6, 1, 1.2 and 1.75 
MGy), while the output is: fracture strain rate εf, fracture 
stress σf, yield stress σy, or coefficient of work hardening, χ. 
As the nature of the output (εf, σf, σy, or χ) is completely dif-
ferent from each other, authors choose to internally model the 
problem with four individual NN trained separately using 
experi 
mental data as described in the above section. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
.  
 
 
 

 
Fig. 5- A block diagram of the hardening characteristics- ANN 

based modeling. 
 

The four proposed ANNs in this paper were trained using 
Levenberg-Marquardt optimization technique. 
A two hidden layers network structure of 20 and 20 neurons 
respectively and the out put layer consisting of one neuron as 
in table 1. The selection of the optimal value of NN results was 
preformed by systemically changing its value in the training 
step (10 – fold cross-validation). In this training, 75% of the 
vectors are used to train the network and 25% of the vectors 
are used to validate how well the network generalized. Train-
ing was terminated after average sum square error of 1.4×10-2 
was reached (50 epochs) for the four ANNs respectively. Dif-
ferent configurations of the four networks were investigated.  
 

Number of training vectors 2948 
Number of validation vectors 631 
Number of testing vectors 631 
Neurons of 1st hidden layer 20 
Neurons of 2nd hidden layer 20 
Training algorithm Levenberg-Marquardt 
Training epochs 50 
Activation function of the 
hidden layers 

Hyperbolic tangent 

Activation function of the 
output layers 

Linear 

 
Table 1- Main information about the training of ANN model. 

 
Simulation results based on ANN approach to modeling εf, σf, 
σy, and χ are given in Fig. 3. It can be seen from these figures 
that the trained (simulated) and predicted NN model shows 
almost exact fitting. Then, ANN model and Levenberg-
Marquardt algorithm were used to calculate the nonlinear 
relationship between the temperature via, εf, σf, σy, and χ at 
different doses with almost exact accuracy. These results give 
the ANN provision of wide usage in modeling of mechanical 
properties of metals and alloys. 
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